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Repairing Redistricting:  
Using an Integer Linear Programming Model to 

Optimize Fairness in Congressional Districts 
  

Abstract—Historically, redistricting has been a process ridden with political manipulation in which 
politicians “gerrymander” districts to achieve a competitive advantage in future elections. However, 
the process of redistricting can be left purely up to a mathematical model that prioritizes key 
characteristics of a fair district. This paper details one such Integer Linear Programming model 
implemented in AMPL that ensures just that—a fair district. The model produces districts that reflect 
the political distribution of the state, with no party favored to win more districts than their share of 
the statewide vote. This model is tested and evaluated on data from the state of Ohio complete with 
reflections for future improvements and extensions. 

Keywords—redistricting, optimization, integer linear programming, gerrymandering, AMPL 

I. INTRODUCTION 
Redistricting is the process by which new lines are drawn to create districts for the U.S. House of 

Representatives and state legislatures. This legally required process happens in each state every ten years 
following the recently completed census [1]. As new data suggests significant population changes, new 
districts are required to ensure equal representation among states and among districts within the states. 
Historically, however, redistricting has rarely been a process by which “equal representation” is a 
priority. In fact, many states have politically biased legislators and state officials draw the maps, making 
the process a political battle where each party spends millions of dollars to find ways to reach a 
competitive advantage in the next decade of elections [1]. The method by which parties gain this 
advantage is known as “gerrymandering”. Through various specialized tactics, politicians are able to 
achieve district maps in which their party is likely to win far greater districts than are proportionally 
representative of the state’s demographic. This ultimately leads to a myriad of issues including 
disenfranchisement, voter apathy, less competitive elections, and reduced motivation for representatives 
to engage with constituents. Even more recognizably, this leads to districts that are in many cases 
strangely shaped or unnecessarily large. Naturally, there have to be much better, well-defined ways to 
draw congressional districts based on several criteria. This project aims to employ some of these criteria 
along with a specification for proportional party representation through an integer linear programming 
(ILP) optimization model. Furthermore, this project tests and evaluates its findings by running its model 
on data from the state of Ohio—a swing state with a history of relentless gerrymandering. 

II. WHAT MAKES A “GOOD” DISTRICT? 
There are several criteria which researchers and mathematicians have defined for the purpose of 

creating optimal, fair districts. To a certain extent, these are also given as guidelines and/or requirements 
to states when drawing new lines. The National Conference of State Legislatures gives many of these 
[2]: 

 Compactness 
Districts should be in regular geometric shapes and distances between parts of a constituency should 

be minimized. 
 Contiguity 

All parts of the district should be connected to all other parts via a path within the district. 
 Integrity 

Districts should not divide territorial boundaries. Subdivisions like cities, counties, etc. should 
largely remain intact throughout a single district. 
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 Population 
The population of each district should be roughly the same. Some say 10% deviations between 

districts are acceptable, however based on many court rulings, states like Colorado require a maximum 
deviation less than 5% [2]. 

 

 Competitiveness 
Districts should be relatively balanced to avoid “safety” for one political party. This encourages 

representatives to be as engaging and fair to their constituencies as possible. It also encourages greater 
voter engagement in elections. 

 
This project prioritizes one additional quality of “good” districts to ensure fairness politically 

throughout a state: 
 

 Proportionality 
The number of districts in a state that one political party is likely to win should be representative of 

the state demographic as a whole. This criterion of political fairness is one slowly being adopted 
nationally and is beginning to be made a greater priority in Ohio for the 2020 districts after the passage 
of Issue 1 regarding congressional redistricting reform [3]. Naturally, there could be several ways to 
define and achieve this requirement. The model described in this paper considers this requirement to be 
achieved when the proportion of voters statewide that favor one party is the same as the proportion of 
districts in which that party is favored to win. 

III. AN INTEGER LINEAR PROGRAMMING OPTIMIZATION MODEL 
In order to achieve optimized districts for so many competing district qualities, it is best done 

mathematically. An Integer Linear Programming (ILP) optimization model can be implemented to 
formalize and optimize this process. This project implements such a model using the modeling language 
AMPL and begins by defining some data regarding a state. 

 Data and Variable Formulation 
 Formulating Counties and Districts 

 In maintaining the integrity of territorial boundaries, this model chooses districts solely from a set of 
a state’s counties without additional territorial divisions beyond the input. First, we define the number 
and name of counties to be defined and the number of districts to be used in a particular state’s model. 

 
 Defining Restricted Possibilities 

 As the model chooses counties to be in districts, it does not make sense for it to consider every county-
district pairing. This would immediately use n*m decision variables, which would be an excessive waste 
of time and memory when it is impractical to consider counties on opposite sides of the state for the same 
district. To alleviate this unnecessary complexity, we define a parameter for whether a particular county 
is allowed to be included in a given district. This parameter is then related to a set for iteration purposes.  

 
  

#DEFINITIONS 
param n; #number of counties in the state 
 
param m; #number of electoral districts 
 
set counties; #the set of state counties 
 
set districts := 1..m; #the set of districts 
 

param p{i in counties, j in districts} binary; 
#is 1 if county i can be included in district j 
 
set possiblePairs := {i in counties, j in districts: p[i,j] == 1}; 
#set of possible county/district pairings 
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 Defining County Relationships 
Next, in order to implement constraints that guarantee connectivity and compactness within a district, 

we must define the distance between pairs of counties. The distance defined by this model is the length 
of the shortest path between two counties in terms of the number of adjacent counties that must be 
traveled through to reach the opposite county. If counties are adjacent, this distance is 1. More 
information on how these distances can be computed based on adjacency data for the counties in a state 
can be found in Appendix A. We also define a tuning parameter here that expresses the maximum 
allowable distance between any pair of counties in a chosen district. 

 
 Expressing Demographics 

 One of the primary features of this ILP model is its choices of districts that are proportional to the 
state’s political leanings. To achieve this, we need number of pieces of demographic political data 
regarding the number of democrats, republicans, and total voters by county. We also define a value 
LARGE that is initialized to the total number of voters in the state. This value acts as a maximum, or 
relative infinity value, in the context of the model for later logical constraints. Next, the model defines 
two important target values: the number of ideal Democrat districts (Democrat is chosen arbitrarily as 
the model assumes a two-party system) and the ideal population of each district. The ideal number of 
Democratic districts is defined by the proportion of Democratic voters multiplied by the number of 
districts. The ideal population for a district is defined as the number of statewide voters divided by the 
number of districts. Finally, we define a tuning parameter for the allowable error of the actual number of 
Democrat districts from the ideal number of these districts in theory. 

 

 Decision Variables 
     In order to constrain and optimize a redistricting model with the previously defined data, we need 3 
classes of decision variables. The most important is the decision variable ‘c’ for every county/district 
pair, which chooses whether a county is included in a certain district. The next variable is called 
‘leansDemocrat’ and there is one for every district to tell whether a given district’s configuration has 
more Democrat or Republican voters. The last decision variable is ‘z’ which will be updated to be the 
objective value our model is minimizing. 

param d{i in counties}; #the number of Democrat voters in a county 
 
param r{i in counties}; #the number of Republican voters in a county 
 
param v{i in counties} := d[i] + r[i]; 
#the number of total Democrat and Republican voters in county 
 
param LARGE := sum{i in counties}v[i]; #sum of all voters in state 
 
param idealNumDemocratDistricts := round(((sum{i in counties}d[i]) /  

     (sum{i in counties}v[i])) * m); 
#proportion of democrat voters multiplied by total number of districts 
 
param targetPopulation := round((sum{i in counties}v[i]) / m); 
 
param politicalLeeway;  
#a tuning parameter for the allowable error of actual Democrat districts 
from the ideal 
 

param distances{i in counties, j in counties} integer; 
#distance between counties i and j measured by how many adjacent counties 
#away i is from j 
 
param MAXDISTANCE; #maximum allowable distance between two counties in a  

 #district 
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 Objective and Objective Constraints 
     Currently, the strictest requirement during redistricting is that districts remain near equal. This 
requirement is one strictly upheld by the courts under constitutional law in the 14th ammendment [2]. 
For this reason, the model given here will seek to produce a solution with the smallest possible 
maximum deviation from a district’s target population. This is done by minimizing the decision 
variable ‘z’ and updating the variable to be the largest population deviation from the target population 
of all districts. This is done through two constraints, one to account for positive deviations and one for 
negative deviations. 

 

 Additional Constraints 
There are several additional logical constraints considered in this model which serve to produce 

the fairest, most optimal districts possible according to the criteria mentioned in Section II. We now 
consider each of these constraints, what they achieve, and how they are implemented. 

 
 Constraining County-District Relationship 

First and foremost, we need a constraint to ensure that each county is assigned to one district and 
one district only. Note that we don’t explicitly require the converse, that each district is assigned at 
least one county, because this constraint is captured by the objective which evens out the population 
distribution among all districts. 

 
 Constraining Political Distribution 

In order to write constraints regarding the number of districts with political leanings toward one 
party or the other we need to use the previously defined variables ‘leansDemocrat’. For these 
variables to work, they must be kept up to date via two constraints that set this variable accordingly. 
These constraints are ‘setOneIfLeansDemocrat’ and ‘setZeroIfLeansRepublican’. Note the 
‘setOneIfLeansDemocrat’ constraint works because if there are more democratic voters, the value on 
the right of the inequality will be positive, requiring the ‘leansDemocrat’ variable to be 1. In the 
‘setZeroIfLeansRepublican’ case, the right side of the inequality will also be 1, requiring  
(1 – ‘leansDemocrat’) to be positive and thus ‘leansDemocrat’ to be 0. 

#OBJECTIVE 
minimize LargestDifference: z; 
 
 
#CONSTRAINTS 
subject to zIsLargestDifferencePos{j in districts}: 
 z >= ((sum{(i,j) in possiblePairs}c[i,j]*v[i]) - targetPopulation); 
 
subject to zIsLargestDifferenceNeg{j in districts}: 
  z >= (-1 * ((sum{(i,j) in possiblePairs}c[i,j]*v[i]) –  

targetPopulation)); 
 
 

var leansDemocrat{j in districts} binary; 
#is 1 if more Democrats in a district, 0 if not 
 
var c{i in counties, j in districts: p[i,j] == 1} binary; 
#is 1 if county i is chosen for district j 
 
var z; #the largest difference from target population among all districts 
 

#CONSTRAINTS 
subject to Exactly1DistrictPerCounty{i in counties}: 
 sum{(i,j) in possiblePairs}c[i,j]=1; 
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Now with these variables constrained to be up to date, we can require the number of Democrat-
leaning districts to be the same as the previously defined ideal plus or minus some predetermined 
leeway (usually 0 or 1). Thus, we can constrain this number of Democratic districts to be in the range 
of the ideal number ± leeway via two linear constraints. 

 
 Constraining Compactness 

In order to help capture another criterion of good districts, we can constrain for compact districts 
by setting a maximum distance between any two counties in a particular district. We create this 
constraint by considering every pair of counties greater than the maximum distance and only allowing 
one of them to be in a particular district. 

 
 Constraining Contiguity 

Finally, an important component to this model of choosing counties to be placed in districts is in 
ensuring that all the counties within a district are connected (i.e. there always exists a path between 
two counties in a district such that all counties along that path are also in the district). In order to make 
sure this is always the case, we define a set of ‘bridgeCounties’ over every distance between 2 and 
‘MAXDISTANCE’ and all county pairs which are that distance away from each other. These bridge 
counties are the set of counties that are adjacent to 1 county in the pair and a distance of 1 closer to 
the other county in the pair. Then, for every pair of counties ‘dist’ distance apart in a district (‘dist’ 
between 2 and ‘MAXDISTANCE’), we require that at least one bridge county be included in the 
district as well. By induction, it can be proven that this will guarantee connectedness amongst the 
counties of a district. It will also aid in our compactness constraint. A detailed proof of the logic 
behind this constraint as well as stronger intuitive details can be found in Appendix B. 

 
  

subject to setOneIfLeansDemocrat{j in districts}: 
LARGE * leansDemocrat[j] >=  
((sum{(i,j) in possiblePairs}c[i,j]*d[i]) 
- (sum{(i,j) in possiblePairs}c[i,j]*r[i])); 

 
subject to setZeroIfLeansRepublican{j in districts}: 
 LARGE * (1 - leansDemocrat[j]) >=  

(-1 * ((sum{(i,j) in possiblePairs}c[i,j]*d[i]) -  
(sum{(i,j) in possiblePairs}c[i,j]*r[i]))); 

 

subject to lessThanMaxDemocratDistricts: 
    sum{j in districts}leansDemocrat[j] <= idealNumDemocratDistricts + 1; 
 
subject to greaterThanMinDemocratDistricts: 
    sum{j in districts}leansDemocrat[j] >= idealNumDemocratDistricts - 1; 

subject to maxDistance{i in counties, j in counties, k in districts: 
     p[i,k] == 1 and p[j,k] == 1 and  
     distances[i,j] > MAXDISTANCE}: 

c[i,k] + c[j,k] <= 1; 
 

set bridgeCounties{i in counties, j in counties, dist in 2..MAXDISTANCE:  
 distances[i,j] == dist} :=  

{k in counties: (distances[i,k] == 1 and distances[j,k] == dist - 1)  
     or (distances[i,k] == dist - 1 and distances[j,k] == 1)}; 

 
subject to countyBridge{i in counties, j in counties, l in districts,  

dist in 2..MAXDISTANCE: distances[i,j] == dist and  
p[i,l] == 1 and p[j,l] == 1}: 

sum{k in bridgeCounties[i,j,dist]: p[k,l] == 1}c[k,l] >=  
     c[i,l] + c[j,l] - 1; 

 



 
Repairing Redistricting  

 
7 

 Data 
This model was tested on Ohio, a swing state with a history of gerrymandering, using relevant data 

from the 2016 election. This data includes all 88 counties with 3 counties split into smaller “sub-
counties”. These are Cuyahoga, Franklin, and Hamilton. These counties include Ohio’s largest cities 
Cleveland, Columbus, and Cincinnati, respectively, and are therefore the three largest counties in 
Ohio. For this reason, the counties were split into smaller sections to allow for greater flexibility in the 
model’s choices for districts. The full data used for the state of Ohio can be found in the project’s 
repository at https://github.com/benjamincarman/repairing-redistricting and included the numbers of 
Democrat/Republican voters for each county based on how those counties voted in 2016. The 
parameter for whether a county was able to be included in a given district was defined methodically 
such that a given county could be included in its current district (from the 2012-2022 map) or any 
district adjacent to its current district. This still allowed for a great amount of flexibility in the model’s 
options while also ensuring many unnecessary decision variables were not even considered. Finally, 
data was included giving distances for each county-county pair generated from 2010 census adjacency 
data (See Appendix A).  

 Results 
The model was then run for maximum distance values of 4, 5, and 6. Each resulted in an objective 

of 32,741 meaning the model was always able to find a redistricting solution where the maximum 
deviation of a district’s population from the ideal population of 321,909 was 32,741. This is a 
deviation of about 10.17% which could likely stand to be improved in future models to meet 
constitutional and federal law. This could be done by splitting counties up further into smaller 
functional units thus giving the model more districting options. This could also be achieved by 
relaxing other constraints, but this may not be ideal. 

The test of this model was very successful in that it met the constraint most central to this 
project—it produced districts with as many favored for each party as should be expected by statewide 
voter data. Specifically, each model produced 6 Democrat-leaning districts which was within the ±1 
range of an expected 7 Democrat-leaning districts. The specific choices for county-district pairs can 
be seen in the colored Congressional maps in Figure 1 and in the model’s output found on the 
project’s Github repository. These maps are in stark contrast to the current Congressional map of 
Ohio (Figure 2) which has districts that are visibly less compact and politically disproportional. 

Not only did the model produce maps meeting the proportionality criteria but it also produced fully 
connected, compact districts. The proof of why this is guaranteed to be the case can be found in 
Appendix B.  

As far as complexity of the model in terms of runtime, the following was observed for each of the 
three models’ solve times: 

 
 Solve Time (summed over all threads) 
Model w/ MAXDISTANCE 4 292.393 
Model w/ MAXDISTANCE 5 268.303 
Model w/ MAXDISTANCE 6 271.808 

 
In each of these cases, this solve time across all threads translated to only a few seconds when run on 
the NEOS servers. It was also observed however, that in the case of this model and Ohio dataset, setting 
a leeway parameter of 0 from the ideal proportionality of Democrat to Republican districts is either 
infeasible or much more expensive computationally. This is something that could potentially be 
alleviated when a greater number of districting ensembles are allowed through the use of smaller 
functional units (e.g. precincts instead of counties). 
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Figure 1a (above). Resulting Congressional map of Ohio of model run with maximum 

distance of 4 between any two counties in the state 

 
Figure 1b (above). Resulting Congressional map of Ohio of model run with maximum 

distance of 5 between any two counties in the state 
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Figure 1c (above). Resulting Congressional map of Ohio of model run with maximum 

distance of 6 between any two counties in the state 

  
Figure 2 (above). Current gerrymandered map of Ohio Congressional districts 
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IV. MODEL EVALUATION AND FUTURE EXTENSIONS 
     This ILP model is a successful start to a considerably complex problem of redistricting. Most 
notable in this model is its ability create districts of connected counties with political leanings 
proportional to the statewide ratio of Democrats and Republicans. However, this model stands to 
improve in a number of areas according to how we defined a “good” district. In order to see where 
this model can be improved, we reconsider each of the criteria initially defined on what makes a 
district “good”: 

 Reevaluating and Extending Upon ‘Good’ District Criteria 
 Compactness 

This model achieves compactness considerably well by simply restricting the distance between pairs 
of counties in a district. It is safe to say that the model given here achieves compact districts, however, 
more could be done. Even with small maximum distances like 4, districts can still string around in 
interesting ways. 

Future Extension: Thus, we can expand upon this compactness criteria by engineering new 
constraints that achieve compactness. For instance, some might suggest that a compact district should 
maximize the Polsby-Popper measure. This is the ratio of a district’s area to the area of a circle whose 
circumference is the same as the district’s perimeter [4]. Similarly, an extension could be made to 
constrain districts to be absent of enclaves (i.e. a district shouldn’t border a county of another district 
on more than 2-3 ‘sides’ or a certain percentage of its perimeter for example). One might even consider 
simply defining distance in other ways to see what achieves the greatest compactness. Would districts 
be more compact if we simply defined distance as the number of miles directly between the centers of 
two counties? 

 
 Contiguity 

As proven in Appendix B, this model achieves districts that are guaranteed to be connected. This 
criterion has clearly been achieved by the proposed model.  
 

 Integrity 
To a certain extent, this model achieves good integrity by using counties as functional units in a 

district. Keeping counties generally intact within a district is one way to maintain a geographical 
region’s integrity. However, in the future smaller functional units like precincts could be used as 
counties are currently used in this model. Thus, it is probable that new constraints will be necessary to 
maintain a certain level of integrity. 

Future Extension: Thus, in the future when smaller functional units might be encoded as the 
“counties” are in this model, new constraints can be engineered to require that only a certain number of 
counties can be divided up. One can also consider constraints that further maintain the integrity of 
regions as defined by more focused attributes such as neighborhoods within cities or regions with a 
distinct, cohesive culture or identity. 

 
 Population 

Overall, as the population criterion is designed to be the objective in this model, population 
distribution is what this model achieves best. However, with deviations just over 10% from the optimal 
population of a district, some courts would rule the map unconstitutional (like Colorado which requires 
a maximum deviation less than 5%) [2]. Thus, in order to reduce this objective value, in the future the 
model needs to be given greater possibilities for ensembles of districts. 

Future Extension: Thus, in order to avoid sacrificing other important constraints, the best way to 
give the model more options for creating districts of uniform population is to create ensembles of 
districts using smaller functional units, like precincts. A future extension would be to gather more data 
for a state like Ohio to test the proposed model using smaller functional units. One could see whether 
the greatly increased number of decision variables required by having more functional units has a strong 
impact on the model’s complexity and whether doing so gives greater performance in criteria like 
population. 
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 Competitiveness 

While this model does a great deal in promoting proportionality of districts leaning toward a 
particular party to the number of that party’s voters statewide, it doesn’t necessarily have any 
components directly addressing the issue of competitive districts. For now, it simply considers the 
political leanings of a district for one party or another. Some districts might still win a candidate by a 
landslide while others might lean towards a certain party, but not by much. 

Future Extension: Thus, more research needs to be done into how to best encode competitiveness 
for a district to be considered “good”. Perhaps this means optimizing the model using a second 
objective such that all districts are also as competitive as possible while maintaining the proportional 
political leaning constraint. Perhaps this means allowing some districts to likely give a certain party a 
landslide victory but while making sure each party has a proportional number of landslide victories to 
its voters statewide. In either case, more needs to be done to ensure competitive districts exist in order 
to continually encourage the connection between an elected representative and their constituents.  
 

 Proportionality 
This model’s main focus is to achieve this new criterion of proportionality. It does this quite 

successfully with the only possible improvement coming from two previously mentioned extensions. 
The first improvement is in being able to achieve the exact optimal proportion without a leeway. In 
order to do this however, it seems that a greater number of possible ensembles of districts might be 
required. Thus, this could be fixed by using smaller functional units like precincts. The other 
improvement is in considering how proportionality should be related to competitiveness and help to 
achieve it as described by the future extensions to competitiveness. Overall, however, this model 
achieves proportionality quite well, especially in comparison to the current gerrymandered maps that 
exist in many states throughout the nation. 

 
As discussed, this model creates decently ‘good’ districts in a short amount of time and provides a 

strong basis for mathematically constructing districts that have a fairness component politically. With 
a few extensions as previously described, the model could truly capture each criterion defined for a 
‘good’ district. There are also a few additional extensions that could be done in the future: 
 

 Additional Future Extensions 
 Literature Review 

The report accompanying this model should contain a thorough literature review into all the other 
research being performed on algorithmic Congressional redistricting. Are other researchers using 
Integer Linear Programming to construct optimal districts? What are other possible criteria for defining 
a compact district? How can political fairness and district competitiveness both be achieved? 

 
 Additional Testing 

The model should be tested on other states as well. How do the results compare in states other than 
Ohio with totally different shapes and political makeups? Will models using data from these states still 
perform as well? Similarly, more can be done to compare models using different values for the 
maximum distance, the leeway, etc. How does changing these hyperparameters affect the quality of the 
resulting map? How do we pick the best values for these hyperparameters? How can we validate the 
optimality of the resulting map? 

 
 Multi-Objective Consideration 

One should consider how techniques like multi-objective integer linear programming can be applied 
to this model. One problem is that it seems there are many possible solutions that reach the same optimal 
objective in terms of the uniformity of population distribution. In order to ensure that the resulting map 
is the best possible, it might be worth translating some of the constraints regarding compactness and 
political fairness into objectives instead, so as to ensure the resulting map does not only meet some 
predetermined constraint, but rather is the best possible map under those criteria. 
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 Broader Model Extension 
Another future extension is in considering how some of the constraints defined regarding 

compactness and others might apply to other graphical models. The issue of compactness in a graphical 
structure is an issue with its own theoretical interest. How might the techniques and findings used here 
apply in other examples or to broader theoretical questions we might have about graphs? 

V. CONCLUSION 
Clearly, this research addresses an issue of vital, timely concern in the United States. States all over 

the country have districting plans that clearly aim to disenfranchise voters and allow politicians to 
choose their constituents rather than other way around. As more and more states and courts begin to 
address this problem, and more courts rule maps unconstitutional, it is necessary to have a constructive, 
algorithmic solution to the problem of redistricting. Furthermore, it is important that the solution 
consider criteria beyond compactness, population, and contiguity. It needs to address political fairness 
both in terms of proportionality and competitiveness. The model proposed here is a big step forward in 
achieving just that. As every state approaches a new redistricting process following the upcoming 2020 
census, models like this one will have to be considered and enhanced in order to save the country from 
another decade of broken democracy. 
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APPENDIX A. USING DIJKSTRA’S ALGORITHM TO COMPUTE COUNTY DISTANCES 
A key component to the constraints of the model considered in this project is a ‘distances’ parameter. 

By defining a distance between any two counties in a state, we can constrain our model to select districts 
that never have two counties more than some maximum distance value apart. This distance parameter 
could be defined as the direct distance in miles between two counties for example. In the case of our 
testing on the state of Ohio, we employ a distance defined in the following way due to its benefit for 
logical constraints regarding contiguity: 
 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗)		𝑠. 𝑡.		𝑖, 𝑗	 ∈ 𝑐𝑜𝑢𝑛𝑡𝑖𝑒𝑠
= 𝑚𝑖𝑛𝑖𝑚𝑢𝑚	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑑𝑔𝑒𝑠	𝑡ℎ𝑎𝑡	𝑚𝑢𝑠𝑡	𝑏𝑒	𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑	𝑡𝑜	𝑟𝑒𝑎𝑐ℎ	𝑗	𝑓𝑟𝑜𝑚	𝑖 

 
Thus, in order to generate this data, we can first obtain adjacency information for all the counties in 

a state (i.e. for every pair of counties recording whether they adjacent to one another). Then we can 
create an instance of a graph from the counties in the state where each node is defined to be a county 
and there exists an edge between two nodes if the corresponding counties are adjacent.  

 
Using this graph structure modeling the state as a whole, we simply apply Dijkstra’s shortest path 

algorithm to find the shortest path between every pair of nodes in the state. The length of this shortest 
path is then defined to be the distance between those two nodes. 

 
For more details on the implementation of this algorithm, see the project repository and its 

corresponding subdirectory on ‘shortestDistances’:  
https://github.com/benjamincarman/repairing-redistricting/tree/master/shortestDistances 

 
  



 
Repairing Redistricting  

 
14 

APPENDIX B. GUARANTEED DISTRICT CONGUTITY PROOF 
In order to generate “good” Congressional districts, a basic requirement is being able to produce 

districts where the set of counties contained within that district are all connected to one another. Recall 
that in order to achieve this, our model put in place the following connectivity constraint: 

 
 Intuition 
What this constraint says in layman’s terms is that for every pair of counties in a district of a distance 

d greater than or equal to 2 apart, we require that one of that pair’s ‘bridge counties’ be included in the 
district. A bridge county is defined as being adjacent to 1 node from the pair and a distance d – 1 from 
the other. Consider the following graphic: 

 
Let every enclosed space be a county in the state. Consider i and j to have already been chosen for 

the same district. Let di be the distance of that county from i and dj be the distance of that county from 
j. Notice that i and j are a distance of 5 from one another. Let those counties highlighted orange be the 
set of bridge counties (as they are a distance of 1 from either i or j and a distance of 5 – 1 = 4 from the 
other). Intuitively, via the constraint above, we require that one of these orange bridge counties also be 
included in the district. Since these bridge counties bring the connectedness of the disjoint subgraphs 
containing i and j closer together and the included bridge county will then require its own bridge county 
to be included in the district, from a recursive perspective, bridge counties will continue to be added 
until these subgraphs are connected via some path. 

 

set bridgeCounties{i in counties, j in counties, dist in 2..MAXDISTANCE:  
 distances[i,j] == dist} :=  

{k in counties: (distances[i,k] == 1 and distances[j,k] == dist - 1)  
     or (distances[i,k] == dist - 1 and distances[j,k] == 1)}; 

 
subject to countyBridge{i in counties, j in counties, l in districts,  

dist in 2..MAXDISTANCE: distances[i,j] == dist and  
p[i,l] == 1 and p[j,l] == 1}: 

sum{k in bridgeCounties[i,j,dist]: p[k,l] == 1}c[k,l] >=  
     c[i,l] + c[j,l] - 1; 
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 Proof of Contiguity 
Connectedness Definition. 
A graph G is connected if and only if for any two nodes 𝑥, 𝑦	 ∈ 𝐺, ∃ a sequence of nodes 𝑏?,
𝑏@	, … , 𝑏B	where 𝑛 < 𝑀𝐴𝑋𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸 s.t. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑥, 𝑏?] = 1, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑏B, 𝑦] = 1, and 
∀	𝑖	 ∈ [2, 𝑛], 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[𝑏RS?, 𝑏R] = 1 
 
Theorem. 
All resulting districts from the redistricting model described in this paper will only contain a 
set of counties C which can be expressed as a connected graph where nodes are the counties 
and edges exist between adjacent counties. 
 
Proof. 
We must show that for any pair of counties in C corresponding to its district l, that they are 
guaranteed to be connected by some subset (or component) of nodes from the district graph. 
We will proceed by induction over possible distances d in the range [1, MAXDISTANCE] 
for a pair of counties in the district. 
 
Base Cases: 

d = 1 (Trivial Case): Consider any two nodes x, y in a district graph to be distance 1 apart.  
  If this is the case x and y are connected by default  
  (by the definition of connectedness). 

d = 2:     Consider any two nodes x, y in a district graph to be distance 2 apart.  
  By the countyBridge constraint, some node z in the set of  
  bridgeCounties[x, y, 2] must be included in the district graph.  
  By the definition of bridgeCounties, z must be a distance of 1 from  
  both x and y. Thus, by the definition of connectedness, x and y are  
  connected via z. 

 
Inductive Case: 
Thus, by proving the above base cases we can assume the following: 
 
Inductive Hypothesis: Any two nodes (counties) in the district graph distance d from one 
another are guaranteed to be connected for any d s.t. 0 < 𝑑 < 𝑑 + 1 ≤ 𝑀𝐴𝑋𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸. 
 
We must now show that any two nodes x, y in the district graph, s.t x, y are distance m = d + 
1 apart, are connected. 
 
By the constraint countyBridge(x, y, l, m), some node z s.t. z is adjacent to x and distance m – 
1 from y or s.t. z is adjacent to y and distance m – 1 from x must be included in the district 
graph.  
 
By the inductive hypothesis, we have that any two nodes in the district graph of distance less 
than m are connected. Thus, in the first case for z it must be the case that z is adjacent to x and 
connected to y by the inductive hypothesis. In the second case for z it must be that z is 
adjacent to y and connected to x by the inductive hypothesis. In either case, by the definition 
of connectivity, x is connected to y via the included node z. 
 
Qed. 
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 Additional Restrictiveness 
It is important to note that while this constraint guarantees connected districts as shown in B, having 

this constraint prohibits a few possible ensembles of districts. Consider the following modification to 
the previously considered graphic: 

 
Let all Km be counties included in the same district as i and j. Notice that the inclusion of these 

counties would make the district fully contiguous. However, it is clear by inspection that none of these 
counties fit the criteria to be considered a bridge county. Thus, their inclusion will not be sufficient for 
our model to consider i and j to be connected and it will require additional counties to be included as a 
result. Thus, a resulting district including only those counties highlighted green as above would not be 
possible under the constraints given in this model. This creates an additional, unintended restrictive 
property by including the connectedness constraint. It is important to realize this side effect and cost of 
having it, however and it can largely be seen as a bonus benefit to the connectivity constraint as districts 
like the one considered here are visibly not compact and tend to produce enclaves. These are not 
desirable qualities anyway so omitting these possibilities does not hurt the effectiveness of the model.  
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APPENDIX C. COMPLETE AMPL MODEL 
 
#DEFINITIONS 
param n; #number of counties in the state 
 
param m; #number of electoral districts 
 
set counties; #the set of state counties 
 
set districts := 1..m; #the set of districts 
 
param p{i in counties, j in districts} binary; 
#is 1 if county i can be included in district j 
 
set possiblePairs := {i in counties, j in districts: p[i,j] == 1}; 
#set of possible county/district pairings 
 
param distances{i in counties, j in counties} integer; 
#distance between counties i and j measured by how many adjacent counties 
#away i is from j 
 
param MAXDISTANCE;  
#maximum allowable distance between two counties in a district 
 
param d{i in counties}; #the number of Democrat voters in a county 
 
param r{i in counties}; #the number of Republican voters in a county 
 
param v{i in counties} := d[i] + r[i]; 
#the number of total Democrat and Republican voters in county 
 
param LARGE := sum{i in counties}v[i]; #sum of all voters in state 
 
param idealNumDemocratDistricts := round(((sum{i in counties}d[i]) / (sum{i 
in counties}v[i])) * m); 
#proportion of democrat voters multiplied by total number of districts 
 
param targetPopulation := round((sum{i in counties}v[i]) / m); 
 
param politicalLeeway; #a tuning parameter for the allowable error of  

     #actual Democrat districts from the ideal 
 
var leansDemocrat{j in districts} binary; 
#is 1 if more Democrats in a district, 0 if not 
 
var c{i in counties, j in districts: p[i,j] == 1} binary; 
#is 1 if county i is chosen for district j 
 
var z; #the largest difference from target population among all districts 
 
 
#OBJECTIVE 
minimize LargestDifference: z; 
 
 
#CONSTRAINTS 
subject to zIsLargestDifferencePos{j in districts}: 
 z >= ((sum{(i,j) in possiblePairs}c[i,j]*v[i]) - targetPopulation); 
 
subject to zIsLargestDifferenceNeg{j in districts}: 
  z >= (-1 * ((sum{(i,j) in possiblePairs}c[i,j]*v[i]) –  
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targetPopulation)); 
 
subject to Exactly1DistrictPerCounty{i in counties}: 
 sum{(i,j) in possiblePairs}c[i,j]=1; 
 
subject to setIfLeansDemocrat{j in districts}: 

LARGE * leansDemocrat[j] >= ((sum{(i,j) in possiblePairs}c[i,j]*d[i])     
 - (sum{(i,j) in possiblePairs}c[i,j]*r[i])); 

 
subject to setIfLeansRepublican{j in districts}: 
 LARGE * (1 - leansDemocrat[j]) >=  

(-1 * ((sum{(i,j) in possiblePairs}c[i,j]*d[i]) -  
(sum{(i,j) in possiblePairs}c[i,j]*r[i]))); 

 
subject to lessThanMaxDemocratDistricts: 
 sum{j in districts}leansDemocrat[j] <= idealNumDemocratDistricts + 1; 
 
subject to greaterThanMinDemocratDistricts: 
 sum{j in districts}leansDemocrat[j] >= idealNumDemocratDistricts - 1; 
 
subject to maxDistance{i in counties, j in counties, k in districts: 

     p[i,k] == 1 and p[j,k] == 1 and  
     distances[i,j] > MAXDISTANCE}: 

 c[i,k] + c[j,k] <= 1; 
 
set bridgeCounties{i in counties, j in counties, dist in 2..MAXDISTANCE:  

 distances[i,j] == dist} := 
 {k in counties: (distances[i,k] == 1 and distances[j,k] == dist - 1)  

or (distances[i,k] == dist - 1 and distances[j,k] == 1)}; 
 
subject to countyBridge{i in counties, j in counties, l in districts,  

dist in 2..MAXDISTANCE: distances[i,j] == dist  
and p[i,l] == 1 and p[j,l] == 1}: 

 sum{k in bridgeCounties[i,j,dist]: p[k,l] == 1}c[k,l] >=  
     c[i,l] + c[j,l] - 1; 

 
 
Note: The data parameters are left undefined in this report. Please see https://github.com/benjamincarman/repairing-
redistricting for the complete set of code, data, and results. 


